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Overview of Today’s Talk

1) Brief Introduction to the Discussed Methodology;

2) Contexts in Which Better Metrics Would Be Beneficial:

• Oversmoothing,
• Oversquashing,
• Long Range Interactions,
• Interaction Effects in Neighbourhoods and Beyond,
• Global Representations.
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Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graph-structured
data as input.

We consider graph-structured data to be the
combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T .

In this talk we will only see a specific type of
GNN, the Message Passing Neural Networks.
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Iteratively performing the message-passing and update computations allows us
to build ‘deep’ learning models, e.g., a 3-layer GCN
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Ã ReLU

(
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ÃXW (1)

)
W (2)

)
W (3)

)
.



3/12

Graph Neural Networks with Virtual Nodes

We consider graph-structured data to
be the combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T ;

• and add a virtual node connected
to all nodes in V (Pham, et al.,
2017; Gilmer et al., 2017).

The model equations for MPNN+VN,

h(ℓ+1)
vn = U(ℓ)

vn (h
(ℓ)
vn , M(ℓ)

vn ({h
(ℓ)
j : j ∈ V })),

h
(ℓ+1)
i = U(ℓ)(h

(ℓ)
i , M(ℓ)({h(ℓ)

j : j ∈ N (i)}), h(ℓ)
vn ).

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4 h

(1)
5

h
(1)
6

h
(1)
7

h
(1)
8

h
(1)
vn

E.g., one layer of the GCN + VN,
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Graph Transformers (GTs)

We consider graph-structured data to be the
combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T ;

• we construct positional encoding pi for
node i ∈ V (random walk or spectral)
and concatenate them with xi .

We use the dense ‘query, key, value self-
attention scheme’ to message pass the con-
catenation of node features and positional en-
codings (Kreuzer et al., 2021; Ying et al.,
2021).
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The GraphGPS architecture (Rampášek et al., 2022) runs both a GT and
MPNN layer in parallel and then sums node representations.

Complexity Comparison

MPNN: O(|E |), MPNN+VN: O(|E |+ |V |), GT: O(|V |2).
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Position: Graph Learning Will Lose Relevance Due To Poor
Benchmarks (Bechler-Speicher, et al., 2025)

Issues:

• “Missing transformative real-world applications and supporting
benchmarks”

• “Graphs are not necessarily constructed in a meaningful way”

• “Bad benchmarking culture”

“This position paper calls for a paradigm shift toward more meaningful bench-
marks, rigorous evaluation protocols, and stronger collaboration with domain
experts to drive impactful and reliable advances in graph learning research, un-
locking the potential of graph learning.”

⇒ These are good points. In addition to better datasets, we need better
metrics for the associated learning tasks.
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Metrics for Oversmoothing

Oversmoothing: Refers to the phenomenon of node representations becoming
indistinguishable in deep GNNs (Alon and Yahav, 2020; Keriven, 2022;
Southern et al., 2025).

However,

• we can still fit arbitrarily deep update steps. Oversmoothing only arises as
a result of arbitrarily many message passing steps, i.e., arbitrarily large
receptive fields over the graph. Do we really want to solve problems of
this kind?

• I suspect the performance decrease on real-world data to arise not from
oversmoothing, but as a consequence of uninformative receptive fields.

• for graph-level tasks oversmoothing may be beneficial.

We need better metrics for the label-relevance of different size receptive fields.
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Oversmoothing for Graph-Level Tasks (Southern et al., 2025)

In fact, we observe MPNN+VN to smooth node features more drastically than
the baselines on the Peptides-func and Peptides-struct datasets:

Oversmoothing: Refers to the phenomenon of node representations becoming
indistinguishable in deep GNNs. We further specify,

• for node-level tasks indistinguishable node representations are clearly
harmful.

• However, for graph-level tasks oversmoothing may be beneficial if the
common node representation aligns with the label distribution.
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Metrics for Oversquashing

Oversquashing can also be defined as the impossibility of losslessly compressing
a receptive field that grows with the depth of the network in fixed size node
representations.
Relatedly, oversquashing sometimes refers to the difficulty of exchanging
information across “bottlenecks” in the graph.

However,

• How many real-world learning tasks require the joint observation of entire
receptive fields?

• How often do we want to exchange information between structural
communities?

It would be beneficial to be able to quantify

1) factorisation: whether this relevant information truly needs to be jointly
observed or the label distribution factorises and subsets of the data can be
processed independently.

2) localisation: where in the k-hop neighbourhood of a node the information
relevant to our learning task is located.
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Metrics for Long Range Interactions

An often only loosely defined concept is that of long range interactions in a
graph, where features at a large shortest path distance from a given central
node v need to be considered to perform a certain learning task on v .

Sometimes related to: Oversquashing prevents the underlying model from
exchanging information between nodes at large commute time τ , where τ(i , j)
measures the expected number of steps for a random walk to commute
between i and j .

The hypothesised presence of such interactions is often used to motivate the
use of graph rewiring techniques, virtual nodes or graph transformers.

However,

• Do we always want the ability to exchange information between distant
nodes?

• In what contexts do long range interactions arise?

There is recent progress on this issue (Zhou et al., 2025) and also Jacob
Bamberger has upcoming work on this topic.
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Metrics for Interaction Effects in Neighbourhoods and Beyond

We proposed the GOAT architecture (Chatzianastasis et al., 2023) to capture
interaction effects in neighbourhoods.
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1) A self-attention mechanism is used to obtain a ranking between the nodes
of the neighbourhood.

2) Then, the ordered neighbourhood is given as input into a sequence model
(LSTM) to produce the updated representation of node vi .

However,

• When are such effects present and how could we quantify them?

• How else may we want to capture such interaction effects?
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Metrics for Global Representations

Observation: First layer attention maps of the self-attention matrix in the
GraphGPS framework for different datasets (Southern et al., 2025).

Table: Comparing GraphGPS (a GT) to an MPNN+VN. Arrows indicate if the
performance improves with higher (↑) or lower (↓) scores. We also report the mean
standard deviation within each column in the first attention layer.

Method Pept-Func (↑) Pept-Struct (↓) MNIST (↑) CIFAR10 (↑)

GraphGPS 0.6534 ±.0091 0.2509 ±.0014 98.051 ±.126 72.298 ±.356

GatedGCN+PE+VN 0.6712 ±.0066 0.2481 ±.0015 98.122 ±.102 70.280 ±.380

std attention layer 0.0011 0.0007 0.0006 0.0038

Here it would be nice to be able to quantify when we can benefit from more
than one global representation to perform our learning task.
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Conclusions

We conclude,

• We should find more meaningful benchmarks for graph learning and when
doing so aim to quantify properties of associated learning tasks.

• I think we have an insufficient understanding of what makes graph learning
tasks complex. A principled, quantified categorisation of graph learning
tasks would be of value.

I recently helped Sohir Maskey with a submission, in which we generalise the
Tree Movers Distance to obtain generalisation bounds on expressive GNNs.
Here a bespoke metric helps us get a better understanding of the problem.



Thank you for your attention!

@jlutzeyer.bsky.social

References
U. Alon & E. Yahav, “On the Bottleneck of Graph Neural Networks and its Practical Implications,” In:

International Conference on Learning Representations (ICLR), 2020.

M. Bechler-Speicher, B. Finkelshtein, F. Frasca, L. Müller, J. Tönshoff, A. Siraudin, V. Zaverkin, M. M. Bronstein,
M. Niepert, B. Perozzi, M. Galkin & C. Morris, “Position: Graph Learning Will Lose Relevance Due To Poor
Benchmarks,” arXiv:2502.14546, 2025.

M. Chatzianastasis, J. F. Lutzeyer, G. Dasoulas & M. Vazirgiannis, “Graph Ordering Attention Networks,”
Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI), 2023.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals & G. E. Dahl, “Neural message passing for Quantum
chemistry,” Proceedings of the 34th International Conference on Machine Learning (ICML), 2017.

N. Keriven, “Not too little, not too much: a theoretical analysis of graph (over) smoothing,” Advances in Neural
Information Processing Systems (NeurIPS, pp.2268-2281, 2022.

Thomas N. Kipf & M. Welling, “Semi-supervised classification with graph convolutional networks,” International
Conference on Learning Representations (ICLR), 2017.

D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau & P. Tossou, “Rethinking graph transformers with spectral
attention,” Advances in Neural Information Processing Systems (NeurIPS, 2021.

https://bsky.app/profile/jlutzeyer.bsky.social


G. Mateos, S. Segarra, A. G. Marques & A. Ribeiro, “Connecting the dots,” IEEE Signal Processing Magazine,
vol. 36, pp. 16–43, 2019.

T. Pham, T. Tran, H. Dam & Svetha Venkatesh, “Graph classification via deep learning with virtual nodes,”
arXiv:1708.04357, 2017.
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