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Overview of Today’s Talk

1) Brief Introduction to Graph Neural Networks (GNNs), virtual nodes in
GNNs, and Graph Transformers;

2) Understanding Virtual Nodes;

3) Reaction to Recent Position Paper: GNNs for Digital Pathology.
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Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graph-structured
data as input.

We consider graph-structured data to be the
combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T .

In this talk we will only see a specific type of
GNN, the Message Passing Neural Networks.
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ÃXW (1)

)
.

x1 x3

x4 x5

x6 x7

x8

m
(1)
2 = 1√

d2

∑
i∈{1,4,7}

xi√
di



3/20

Graph Neural Networks with Virtual Nodes

We consider graph-structured data to
be the combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T ;

• and add a virtual node connected
to all nodes in V (Pham, et al.,
2017; Gilmer et al., 2017).

The model equations for MPNN+VN,
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E.g., one layer of the GCN + VN,
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4/20

Graph Transformers (GTs)

We consider graph-structured data to be the
combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T ;

• we construct positional encoding pi for
node i ∈ V (random walk or spectral)
and concatenate them with xi .

We use the dense ‘query, key, value self-
attention scheme’ to message pass the con-
catenation of node features and positional en-
codings (Kreuzer et al., 2021; Ying et al.,
2021).

(x1, p1)

(x2, p2)

(x3, p3)

(x4, p4) (x5, p5)

(x6, p6) (x7, p7)

(x8, p8)

The GraphGPS architecture (Rampášek et al., 2022) runs both a GT and
MPNN layer in parallel and then sums node representations.

Complexity Comparison

MPNN: O(|E |), MPNN+VN: O(|E |+ |V |), GT: O(|V |2).
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Academic and Industrial Success of GNNs

Empirical and Theoretical Research:

• expressivity analysis of GNNs (Xu et al., 2019;
Geerts and Reutter, 2022);

• bottlenecks, e.g., oversmoothing and over-
squashing (Alon and Yahav, 2020);

• robustness of GNNs (Günnemann, 2022; Abba-
haddou et al., 2024);

• generalisation of GNNs (Vasileiou et al., 2025).

Successful Applications of GNNs:

• Google Maps (Lange and Perez, 2020);

• Twitter (Bronstein, 2020);

• Amazon, Alibaba, Pinterest & Uber Eats (Vir-
inchi et al., 2022; Wang et al., 2018; Ying et
al., 2018; Jain et al., 2019);

• Discovery of two new antibiotics (Stokes et al.,
2020; Liu et al., 2023);

• LinkedIn (Borisyuk et al., 2024);

• Snapchat (Zhao et al., 2025).
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Understanding Virtual Nodes: Oversmoothing,
Oversquashing, and Node Heterogeneity

Southern, Di Giovanni, Bronstein & Lutzeyer (2025, ICLR)
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Oversmoothing I

Oversmoothing: Refers to the phenomenon of node representations becoming
indistinguishable in deep GNNs.

Setting: We assume a linear setting without activation functions, where

MPNN: H(ℓ+1) = H(ℓ) + AH(ℓ)W (ℓ),

MPNN +VN: H(ℓ+1) = H(ℓ) + AH(ℓ)W (ℓ) +
1

n
11⊤H(ℓ−1)Q(ℓ).

The PairNorm model (related to MPNN - VN, i.e., Q(ℓ) = −I for all ℓ ∈ N) is
designed to prevent oversmoothing. Previous work credited the strong
empirical performance of MPNN+VN to its ability to emulate PairNorm.

Theorem (Expressivity in Terms of Polynomial Filters)

There are polynomial filters Mean
(∑m

k=0 A
kHΘk

)⊤
that can be learned by

MPNN but not by MPNN - VN.
Conversely, any polynomial filter learned by MPNN can also be learned by
MPNN + VN.
Furthermore, there exist polynomial filters that can be learned by MPNN + VN
but not by MPNN.

⇒ The empirical performance gain of MPNN+VN is unlikely to result from its
ability to prevent oversmoothing.
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Oversmoothing II

In fact, we observe MPNN+VN to smooth node features more drastically than
the baselines on the Peptides-func and Peptides-struct datasets:

Oversmoothing: Refers to the phenomenon of node representations becoming
indistinguishable in deep GNNs. We further specify,

• for node-level tasks indistinguishable node representations are clearly
harmful.

• However, for graph-level tasks oversmoothing may be beneficial if the
common node representation aligns with the label distribution.
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Oversquashing I

Oversquashing prevents the underlying model from exchanging information
between nodes at large commute time τ , where τ(i , j) measures the expected
number of steps for a random walk to commute between i and j .

Theorem

The average commute time after adding a VN changes as

1

|V |2
n∑

i,j=1

(τvn(i , j)− τ(i , j)) =
4|E |
|V |

n−1∑
ℓ=1

1

λℓ(λℓ + 1)

( |V |
|E | λℓ − 1

)
, (1)

where 0 = λ0 < λ1 ≤ . . . ≤ λn−1 denote the eigenvalues of the unnormalised
graph Laplacian L = D − A.
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Oversquashing II

Observation: On our datasets the addition of a VN results in a reduction of the
average commute time and therefore alleviates potential oversquashing issues.
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Node Heterogeneity

Node Heterogeneity: Do nodes affect a central node’s representation
heterogeneously, all equally or not at all?

We consider nodes i and k that are separated by more than 2 hops and study
the Jacobian ∂h

(ℓ+1)
i /∂h

(ℓ−1)
k , which allows us to analyse the dependence of

hidden states on each other:

• Trivially, for MPNN, the Jacobian equals 0.

• For MPNN + VN, the Jacobian is independent of k.

• For MPNN + VNG , the Jacobian is dependent on k, where MPNN +
VNG is formulated as follows,

h
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i,loc = up(ℓ)(h
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• For GTs, the Jacobian depends on both i and k.
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Empirical Results I

Observation: First layer attention maps of the self-attention matrix in the
GraphGPS framework for different datasets.

Table: Effects of projecting the non-local part of GraphGPS onto the mean and its
comparison to using a VN. Arrows indicate if the performance improves with higher
(↑) or lower (↓) scores. We also report the standard deviation of the column sums in
the first attention layer.

Method Pept-Func (↑) Pept-Struct (↓) MNIST (↑) CIFAR10 (↑)

GPS 0.6534 ±.0091 0.2509 ±.0014 98.051 ±.126 72.298 ±.356

GPS + projection 0.6498 ±.0054 0.2487 ±.0011 98.176 ±.120 71.455 ±.513

GatedGCN+PE+VN 0.6712 ±.0066 0.2481 ±.0015 98.122 ±.102 70.280 ±.380

std attention layer 0.0011 0.0007 0.0006 0.0038
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Empirical Results II

Table: Test performance on two LRGB datasets (Dwivedi et al., 2023) and three other
benchmarks from (Dwivedi et al., 2022). For Peptides-Func and Peptides-Struct, ±
std is shown over 4 runs whilst the remaining datasets are over 10 runs (missing values
from literature are indicated by ‘-’). The first, second and third best results for each
task are color-coded.

Method Pept-Func (↑) Pept-Struct (↓) MNIST (↑) CIFAR10 (↑) MalNet-Tiny (↑)

GCN 0.5930 ±0.0023 0.3496 ±0.0013 90.705 ±0.218 55.710 ±0.381 81.0

GINE 0.5498 ±0.0079 0.3547 ±0.0045 96.485 ±0.252 55.255 ±1.527 88.98 ±0.56

GatedGCN 0.5864 ±0.0077 0.3420 ±0.0013 97.340 ±0.143 67.312 ±0.311 92.23 ±0.65

GatedGCN+PE 0.6765 ±0.0047 0.2477 ±0.0009 - 69.948 ±0.499 -

GatedGCN+PE-ViT 0.6942 ±0.0075 0.2465 ±0.0015 98.460 ±0.090 71.580 ±0.090 -

GatedGCN+PE-Mixer 0.6932 ±0.0017 0.2508 ±0.0007 98.320 ±0.040 70.600 ±0.220 -

CRaWl 0.7074 ±0.0032 0.2506 ±0.0022 97.940 ±0.050 69.010 ±0.259 -

DRew 0.7150 ±0.0044 0.2536 ±0.0015 - - -

SAN+RWSE 0.6439 ±0.0075 0.2545 ±0.0012 - - -

EGT - - 98.173 ±0.087 68.702 ±0.409 -

GRIT 0.6988 ±0.0082 0.2460 ±0.0012 98.108 ±0.111 76.468 ±0.881 -

GPS 0.6534 ±0.0091 0.2509 ±0.0014 98.051 ±0.126 72.298 ±0.356 93.50 ±0.41

Exphormer 0.6527 ±0.0043 0.2481 ±0.0007 98.414 ±0.035 74.690 ±0.125 94.02 ±0.21

GatedGCN+PE+VN 0.6712 ±0.0066 0.2481 ±0.0015 98.122 ±0.102 70.280 ±0.380 92.62 ±0.57

GatedGCN+PE+VNG 0.6822 ±0.0052 0.2458 ±0.0006 98.626 ±0.100 76.080 ±0.330 93.67 ±0.37

⇒ Our MPNN+VNG consistently outperforms its MPNN+VN counterpart.
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Reaction to Recent Position Paper:
GNNs for Digital Pathology
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Position: Graph Learning Will Lose Relevance Due To Poor
Benchmarks (Bechler-Speicher, et al., 2025)

Issues:

• “Missing transformative real-world applications and supporting
benchmarks”

• “Graphs are not necessarily constructed in a meaningful way”

• “Bad benchmarking culture”

“This position paper calls for a paradigm shift toward more meaningful bench-
marks, rigorous evaluation protocols, and stronger collaboration with domain
experts to drive impactful and reliable advances in graph learning research, un-
locking the potential of graph learning.”

⇒ These are good points. Our recent work on GNNs on digital pathology is a
step in this direction (Kormann et. al, 2025).
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HIEGNet: A Heterogenous Graph Neural Network Including
the Immune Environment in Glomeruli Classification

Kormann, Ramuz, Nisar, Schaadt, Annuth, Doerr, Feuerhake, Lampert & Lutzeyer

(2025, MIDL)
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Glomeruli Classification

Context: Glomeruli are functional units in the kidney that are relevant in
chronic kidney disease diagnosis.

Machine Learning Task: Glomeruli Health State Classification.

Relevant Data: Whole Slide Images.

Healthy Glomerulus Dead Glomerulus Tissue Slice
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Heterogeneous Graph Construction

1) We start with segmented whole slide images, giving rise to different node
types.

2) We draw edges between immune cells using a 5-nearest neighbour graph
construction combined with a maximal edge length of ϵ = 100 µm.

3) We draw edges between immune cells and glomeruli within a radius
ϵ = 277 µm around glomeruli.

4) We draw edges between glomeruli using a ϵ-neighbourhood construction
with ϵ = 138.6 µm.

5) We furthermore attribute nodes with shape-based features and local binary
patterns.
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Graph Neural Network & Results

We then define a heterogeneous GNN operating on the heterogeneous graph
we constructed. Here we fit separate update U

(ℓ)
r and message passing

functions M
(ℓ)
r per edge type.

We hence define a message passing layer of HIEGNet as

h(ℓ+1)
v =

∑
r∈R

U(ℓ)
r

(
h(ℓ)
v ,M(ℓ)

r

(
h(ℓ)
v , {h(ℓ)

u : (v , r , u) ∈ E }
))

.
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Random Forest

ResNet-18

Effici
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U-Net
HIEGNet

0.64
± 0.02

0.35
± 0.04*

0.53
± 0.07*

0.52
± 0.08

0.73
± 0.01

F1-Score: Between Patients

⇒ In a dataset of 6 patients, we generalise to three unseen patient better than
the baseline models.
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Conclusions

• Virtual Nodes (VNs) enable global information propagation in GNNs in a
computationally efficient way.

• MPNN + VN falls in between MPNN and Graph Transformers.

• VNs are particularly effective for graph-level tasks especially, and the
following is conjecture, if the chosen VN-aggregation scheme projects into
a label-informative subspace.

• We should find more meaningful benchmarks for graph learning and our
work on digital pathology is a step in this direction.



Thank you for your attention!
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A. Deac, M. Lackenby & P. Veličković, “Expander Graph Propagation,” arXiv:2210.02997, 2022.
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