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Overview of Today’s Talk

1) Brief Introduction to Graph Neural Networks (GNNs);

2) GNNs where graph structure is altered/learned previous to training;

3) GNNs where graph structure is altered/learned during training;

4) Robustness of GNNs.
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Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graph-structured
data as input.

In this talk we will only see a specific type of
GNN, the Message Passing Neural Networks.
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w : w ∈ N (v)

})
,

h(k)
v = U(k)

(
h(k−1)
v ,m(k)

v

)
.

E.g., the Graph Convolutional Network (GCN,
Kipf and Welling, 2017)
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Iteratively performing the message-passing and update computations allows us
to build ‘deep’ learning models, e.g., a 3-layer GCN
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Ã ReLU

(
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.



3/20

Academic and Industrial Success of GNNs

Empirical and Theoretical Research:

• expressivity analysis of GNNs
(Xu et al., 2019; Geerts and Reutter,
2022);

• bottlenecks, e.g., oversmoothing and
oversquashing (Alon and Yahav, 2020;
Deac et al., 2022)

• robustness to adversarial attacks and
noise (Günnemann, 2022; Zhou et al.,
2020).

Successful Applications of GNNs:

• Google Maps (Lange and Perez, 2020);

• Twitter (Bronstein, 2020);

• Amazon, Alibaba, Pinterest & Uber Eats
(Virinchi et al., 2022; Wang et al., 2018;
Ying et al., 2018; Jain et al., 2019);

• Discovery of two new antibiotics (Stokes
et al., 2020; Liu et al., 2023);

• LinkedIn (Borisyuk et al., 2024).
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Overview

We shall now categorise Graph Neural Networks (GNNs) into GNNs that

1) alter or learn the graph structure previous to training;

2) alter or learn the graph structure during training.

GNNs that do not modify the graph structure at all, such as the GCN (Kipf
and Welling, 2017) and GIN (Xu et al., 2019), are omitted in this talk.
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Graph is Altered/Learned Before Training

Reweight existing edges:

• GCN-k (Seddik et al., 2022, AISTATS)
Reweight edges based on node feature kernels

Add/Delete individual edges:

• SDRF (Topping, Di Giovanni et al., 2022)
Rewiring according to curvature metrics on graphs

• Modularity-Aware (V)GAE (Salha-Galvan et al., 2022, Neural Networks)
Add edges based on Louvain Clustering

Completely redraw the graph:

• PPRGo (Bojchevski et al., 2020)
Rewiring according to thresholded Personalised PageRank Scores

• CorePPR (Ramos Vela et al., 2022, NeurIPS Workshop)
Rewiring according to thresholded Personalised PageRank and
CoreRank Scores

Represent the graph via substructures:

• PathNNs (Michel et al., 2023, ICML)
We represent graphs as collections of paths
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Paths Collections

Idea

Explicitly representing paths (and nodes) instead of only nodes in GNNs
should lead to more accurate and expressive models.

We make use of three different collections of paths:
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Path Neural Networks

1) Given a collection of paths in a graph, we apply an LSTM to learn path
representations.

2) We then aggregate the representations of all paths emanating from a node
to form updated node representations.

At layer ℓ of the model we process paths of length ℓ, e.g., ℓ = 2.
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Results on Real-World Datasets

• PathNNs demonstrate convincing performance on Synthetic Datasets
designed to benchmark the expressivity of GNNs.

• 6 Real-World Graph Classification Datasets

DD PROTEINS NCI1 ENZYMES IMDB-B IMDB-M

GIN 75.3 ± 2.9 73.3 ± 4.0 80.0 ± 1.4 59.6 ± 4.5 71.2 ± 3.9 48.5 ± 3.3

GraphSAGE 72.9 ± 2.0 73.0 ± 4.5 76.0 ± 1.8 58.2 ± 6.0 68.8 ± 4.5 47.6 ± 3.5

GAT 73.9 ± 3.4 70.9 ± 2.7 77.3 ± 2.5 49.5 ± 8.9 69.2 ± 4.8 48.2 ± 4.9

SPN (K = 1) 72.7 ± 2.6 71.0 ± 3.7 80.0 ± 1.5 67.5 ± 5.5 NA NA

SPN (K = 5) 77.4 ± 3.8 74.2 ± 2.7 78.6 ± 3.8 69.4 ± 6.2 NA NA

PathNet (N = 10,K = 2) OOM 70.5 ± 3.9 64.1 ± 2.3 69.3 ± 5.4 70.4 ± 3.8 49.1 ± 3.6

Nested GNN 77.8 ± 3.9 74.2 ± 3.7 NA 31.2 ± 6.7 NA NA

PathNN-P (K = 1) 76.9 ± 3.7 75.2 ± 3.9 77.5 ± 1.6 73.0 ± 5.2 72.6 ± 3.3 50.8 ± 4.5

PathNN-SP (K = 2) 75.3 ± 2.7 73.1 ± 3.1 82.0 ± 1.6 71.6 ± 6.4 70.8 ± 3.5 50.0 ± 4.1

PathNN-SP (K = 3) 77.0 ± 3.1 72.2 ± 2.7 82.2 ± 1.7 69.2 ± 4.7 - -

PathNN-SP+ (K = 2) 74.7 ± 3.0 73.1 ± 3.7 81.0 ± 1.4 72.5 ± 5.3 70.5 ± 3.4 50.7 ± 4.5

PathNN-SP+ (K = 3) 76.5 ± 4.6 73.2 ± 3.3 82.3 ± 1.9 70.4 ± 3.1 - -

PathNN-AP (K = 2) 75.0 ± 4.4 73.1 ± 4.9 81.3 ± 1.8 71.8 ± 4.8 71.7 ± 3.6 49.8 ± 4.2

PathNN-AP (K = 3) OOM 73.1 ± 4.0 82.3 ± 1.7 69.0 ± 5.3 OOM OOM

• Our code is available: https://github.com/gasmichel/PathNNs expressive

• Graph Learning on the basis of substructures is expensive but accurate.

https://github.com/gasmichel/PathNNs_expressive
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Graph is Altered/Learned During Training

Reweight existing edges:

• GAT (Veličković et al., 2018)
Message-Passing Operation: AattX ,

• GATv2 (Brody et al., 2022)
Message-Passing Operation: Aattv2X ,

• PGSO-GNN (Dasoulas et al., 2021, ICLR)

Learn a graph-level graph representation via a particular parameterisation
of the message passing operator

Completely redraw the graph:

• Graph Transformers (Dwivedi and Bresson, 2021)
Freely learn the message passing operator using the Transformer attention
mechanism

Represent neighbourhoods as sequences:

• GOAT (Chatzianastasis et al., 2023, AAAI)

1) A self-attention mechanism is used to obtain a ranking of nodes in
neighbourhoods.

2) An LSTM processed the ordered neighbourhoods to produce updated
node representation.
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Learning Parametrised Graph Shift Operators (2021, ICLR)

Recall, that MPNNs iterate between message passing and update steps.

Observation

In MPNNs, the choice of message passing function corresponds to a choice of
matrix used to represent the graph, e.g., D

−1/2
1 A1D

−1/2
1 in the GCN

H(l+1) = σ
(
D

−1/2
1 A1D

−1/2
1 H(l)W (l)).

Definition

We define the parametrised graph shift operator (PGSO), denoted by γ(A,S) ,
as

γ(A,S) = m1D
e1
a +m2D

e2
a AaD

e3
a +m3In, (1)

where Aa = A+ aIn, Da = Diag(Aa1n) and S = (m1,m2,m3, e1, e2, e3, a).

The GCN-PGSO is defined as H(l+1) = σ
(
γ(A,S)H(l)W (l)

)
, where the seven

scalablar parameters in S are trainable.

Hence, we learn different edge weights as functions of node degrees.
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Bounding the Expected Robustness of Graph Neural
Networks Subject to Node Feature Attacks

Abbahaddou*, Ennadir*, Lutzeyer, Vazirgiannis & Boström (2024, ICLR)
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(Graph) Adversarial Attacks

Goal: Adversarial attacks apply a small change to the input to achieve a large
change in the output of our model.

To quantify the robustness of a function processing graph structured data, i.e.,
f : (G,X ) → Y we need:

• a distance on the input space

dα,β
2 ([G ,X ], [G̃ , X̃ ]) = minP∈Π

(
α∥A− PÃPT∥2 + β∥X − PX̃∥2

)
,

• and a distance on the output space
d1(f (G̃ , X̃ ), f (G ,X )) = ∥f (G̃ , X̃ )− f (G ,X )∥1.

Expected Adversarial Robustness

Let the expected vulnerability of a graph function f be defined as
Advα,β

ϵ [f ] = P(G ,X )∼DG,X [(G̃ , X̃ ) ∈ Bα,β(G ,X , ϵ) : dY(f (G̃ , X̃ ), f (G ,X )) > σ],

with Bα,β(G ,X , ϵ) = {(G̃ , X̃ ) : dα,β([G ,X ], [G̃ , X̃ ]) < ϵ} for any budget ϵ ≥ 0.

Then, a graph function f : (G,X ) → Y is ((dα,β , ϵ), (dY , γ))–robust if its
vulnerability Advα,β

ϵ [f ] can be upper-bounded by γ, i.e., Advα,β
ϵ [f ] ≤ γ.
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Problem Set-Up & Theoretical Results

Recall, Graph Neural Networks (GNNs) take both a graph A and node features
X as input.

Problem: Most defense approaches for GNNs defend structural attacks
altering A. There exists very little work on how to defend against attacks on
the node features X .

Upper Bound on GCN Vulnerability

We consider node-feature attacks on the input graph (A,X ), with a budget ϵ
and L-layer GCNs with weight matrices W (i) for i ∈ {1, . . . , L}.
Then, the vulnerability of GCNs is upper bounded by

γ =
L∏

i=1

∥W (i)∥1
L∏

i=1

∥W (i)∥1
ϵ
∑

u∈V ŵu

σ
,

with ŵu denoting the sum of normalized walks of length (L− 1) starting from
node u.

Insight: Our upper bound on the vulnerability of a GCN is smaller for
small

∏L
i=1∥W

(i)∥1 yielding a more robust GCN.
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Methodology

Fact: Orthonormal matrices have norm 1.
⇒ According to our bound a GNN with orthonormal weight matrices should

be more robust.

Björk Orthonormalisation Algorithm

Given a weight matrix W we iteratively alter it to approximate the closest
orthonormal matrix Ŵ . When Ŵ0 = W , we recursively compute

Ŵk+1 = Ŵk

(
I + 1

2

(
I − Ŵ T

k Ŵk

)
+ . . .+ (−1)p

(−1/2
p

) (
I − Ŵ T

k Ŵk

)p)
.

Proposed Solution: In our GCORN model we propose the inclusion of several
Björk Orthonormalisation iterations in each forward pass during the training of
a GCN, yielding weight matrices that approach orthonormality and thereby
a more robust GNN.
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Results

Table: Node classification accuracy (± standard deviation) for feature-based attacks.

Attack Dataset GCN GCN-k AirGNN RGCN ParsevalR GCORN

Random

(ψ = 0.5)

Cora 68.4 ± 1.9 69.2 ± 2.6 73.5 ± 1.9 71.6 ± 0.3 72.9 ± 0.9 77.1 ± 1.8

CiteSeer 57.8 ± 1.5 62.3 ± 1.2 64.6 ± 1.6 63.7 ± 0.6 65.1 ± 0.8 67.8 ± 1.4

PubMed 68.3 ± 1.2 71.2 ± 1.1 70.9 ± 1.3 71.4 ± 0.5 71.8 ± 0.8 73.1 ± 1.1

CS 85.3 ± 1.1 86.7 ± 1.1 87.5 ± 1.6 88.2 ± 0.9 87.6 ± 0.6 89.8 ± 1.2

OGBN-Arxiv 68.2 ± 1.5 52.8 ± 0.5 66.5 ± 1.3 63.8 ± 1.9 68.3 ± 1.9 69.1 ± 1.8

Random

(ψ = 1.0)

Cora 41.7 ± 2.1 46.3 ± 2.8 53.7 ± 2.2 52.8 ± 1.6 55.3 ± 1.2 57.6 ± 1.9

CiteSeer 38.2 ± 1.3 45.3 ± 1.4 49.8 ± 2.1 43.7 ± 2.2 51.2 ± 1.2 57.3 ± 1.7

PubMed 60.1 ± 1.7 62.3 ± 1.3 62.4 ± 1.2 61.9 ± 1.2 61.3 ± 1.7 65.8 ± 1.4

CS 69.9 ± 1.3 73.2 ± 0.9 76.7 ± 2.8 76.2 ± 1.4 78.7 ± 1.2 81.3 ± 1.6

OGBN-Arxiv 66.4 ± 1.9 46.6 ± 0.6 62.7 ± 1.6 63.0 ± 2.4 66.1 ± 0.7 67.3 ± 2.1

PGD

Cora 54.1 ± 2.4 58.3 ± 1.6 68.2 ± 1.8 62.5 ± 1.2 68.6 ± 1.7 71.1 ± 1.4

CiteSeer 52.3 ± 1.1 59.6 ± 1.6 59.3 ± 2.1 61.9 ± 1.1 62.1 ± 1.5 65.6 ± 1.4

PubMed 66.1 ± 2.1 67.3 ± 1.3 70.8 ± 1.7 69.5 ± 0.9 68.9 ± 2.1 72.3 ± 1.3

CS 71.3 ± 1.1 74.1 ± 0.8 76.3 ± 2.1 76.6 ± 1.2 77.3 ± 0.6 79.6 ± 1.2

OGBN-Arxiv 67.5 ± 0.9 49.9 ± 0.7 55.7 ± 0.9 63.6 ± 0.7 67.6 ± 1.2 68.1 ± 1.1

Nettack

Cora 60.9 ± 2.5 64.2 ± 5.2 66.7 ± 3.8 63.4 ± 3.8 67.5 ± 2.5 68.3 ± 1.4

CiteSeer 55.8 ± 1.4 71.7 ± 1.4 67.5 ± 2.5 70.8 ± 3.8 69.2 ± 3.8 77.5 ± 2.5

PubMed 60.0 ± 2.5 65.8 ± 2.9 69.2 ± 1.4 71.7 ± 3.8 68.3 ± 1.4 70.8 ± 1.4

CS 55.8 ± 1.4 71.6 ± 1.4 76.7 ± 1.4 71.7 ± 2.9 75.8 ± 2.8 78.3 ± 1.4

OGBN-Arxiv 49.2 ± 2.9 53.3 ± 1.4 56.7 ± 1.4 52.6 ± 2.5 55.8 ± 1.4 55.8 ± 1.4

• Our GCORN model often outperforms existing defense approaches when
subject to feature based attacks.

• GCORN is also effective against structure-based, as well as combined
structure and feature attacks.
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A Simple and Yet Fairly Effective Defense
for Graph Neural Networks

Ennadir, Abbahaddou, Lutzeyer, Vazirgiannis & Boström (2024, AAAI)
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Problem Set-Up

Problem: Available defense methods often have high computational complexity
and training time (often increasing with increasing graph size).

Solution Approach: We propose a GNN, called the NoisyGNN, in which hidden
states are perturbed by random noise following a normal distribution
N ∼ N (0, βI ), i.e., our GNNs are of the form

ŷ = σ
(
Ã ReLU

(
ÃXW (1) + N

)
W (2)

)
.
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Theoretical Results

Upper Bounds on GNN Vulnerability

We consider structural perturbations of the input graph (A,X ), with a budget ϵ
and 2-layer GNNs with 1-Lipschitz continuous activation functions and weight
matrices W (1),W (2).

• Then, the vulnerability of GCNs is upper bounded by

2(∥W (2)∥∥W (1)∥∥X∥ϵ)2

β
;

• Then, the vulnerability of GINs is upper bounded by

(∥W (2)∥∥W (1)∥∥X∥ϵ(2∥A∥+ϵ))2

2β
.

Insight: Our upper bound on the vulnerability of a GNN is smaller for large β
yielding a more robust GNN.
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Experimental Results

Table: Classification accuracy (± standard deviation) of combining defense methods
with the proposed noise injection on different benchmark datasets.

Method Cora CiteSeer PolBlogs

GINGuard 61.8±0.5 55.6±1.8 82.7±0.6

+ Noisy 66.2±1.3 58.3±1.9 83.6±0.8

GIN-Jaccard 70.4±1.1 61.2±2.3 -

+ Noisy 72.9±0.8 64.9±1.8 -

GCNGuard 69.5±0.7 66.2±0.6 64.7±0.8

+ Noisy 72.4±1.2 68.9±0.9 65.8±1.3

GCN-Jaccard 66.7±0.5 61.2±1.1 -

+ Noisy 69.6±0.9 63.1±0.6 -

• Our NoisyGCNs sometimes outperform other defense methods.

• NoisyGNNs are faster to train than most other defense methods.

• When combined with other defense methods, best performance is achieved.
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Conclusions

• Graph Neural Networks (GNNs) are a versatile and powerful tool, that you
may want to consider using.

• The categorisation of GNNs into when and how they alter the graph
structure is insightful and could give rise to new models.

• The robustness of GNNs is one of many interesting problem domains that
have opened up in graph learning.

I may be looking to hire Postdocs & PhD students soon!

Please email me if you are interested.



Thank you for your attention!

@JLutzeyer
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