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Overall Goal: Learn “informative” representations of graph structured data

What is graph structured data?
It's the combination of

e agraph G = (V,E);

o node-features X = [x1,..., x| .

US political weblogs
(Adamic & Glance, 2005)

Where does it arise?
It's ubiquitous!

What can we learn from it? Ca‘ifgrif:geirn“gogegl”e
e Node and Graph Classification
e Node and Graph Regression

e Link Prediction

Deezer artists
(Salha-Galvan, 2022)
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data as input.

In this talk we will only see a specific type of
GNN, the Message Passing Neural Networks.

mi = pk) ({hf,f_l) TwE N(v)}) ,
H = U (hED, mP).

E.g., the Graph Convolutional Network (GCN,
Kipf and Welling, 2017)

HO = ReLU (AXW“)) :

Iteratively performing the message-passing and update computations allows us
to build ‘deep’ learning models, e.g., a 3-layer GCN

§ =0 (AReLU (A ReLU (AXxw) w®) w®).
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Successful Applications of GNNs:

Google Maps (Lange and Perez, 2020);
Twitter (Bronstein, 2020);

Amazon, Alibaba, Pinterest & Uber Eats
(Virinchi et al., 2022; Wang et al., 2018;
Ying et al., 2018; Jain et al., 2019);

Discovery of two new antibiotics (Stokes
et al., 2020; Liu et al., 2023);

LinkedIn (Borisyuk et al., 2024).

3/14



Bounding the Expected Robustness of Graph Neural
Networks Subject to Node Feature Attacks

Abbahaddou*, Ennadir¥*, Lutzeyer, Vazirgiannis & Bostrém (2024, ICLR)
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To quantify the robustness of a function processing graph structured data, i.e.,
f:(G,X) =Y we need:
e a distance on the input space
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Expected Adversarial Robustness

Let the expected vulnerability of a graph function f be defined as
Adve P[f] = Pe x)~pg »[(G, X) € B*P(G, X, €) : dy(f(G, X), (G, X)) > a],
with B*#(G, X, e) = {(G, X) : d*#([G, X],[G, X]) < ¢} for any budget ¢ > 0.

Then, a graph function f : (G, X) = Y is ((d*?, €), (dy,))-robust if its
vulnerability Adv®?[f] can be upper-bounded by v, i.e., Adv®?[f] < 7.
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X as input.

Problem: Most defense approaches for GNNs defend structural attacks
altering A. There exists very little work on how to defend against attacks on
the node features X.

Upper Bound on GCN Vulnerability

We consider node-feature attacks on the input graph (A, X), with a budget €
and L-layer GCNs with weight matrices W) j € {1,..., L}.
Then, the vulnerability of GCNs is upper bounded by

v = HIIW EZ”GV i

with W, denoting the sum of normalized walks of length (L — 1) starting from
node u.

Insight: Our upper bound on the vulnerability of a GCN is smaller for
small [[~, | W] yielding a more robust GCN.
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Methodology

Fact: Orthonormal matrices have norm 1.
= According to our bound a GNN with orthonormal weight matrices should
be more robust.

Bjork Orthonormalisation Algorithm
Given a weight matrix W we iteratively alter it to approximate the closest
orthonormal matrix W. When Wy = W, we recursively compute

Wis = W (143 (1= W W) + .+ (1P (T3 (1= W) )

Proposed Solution: In our GCORN model we propose the inclusion of several
Bjork Orthonormalisation iterations in each forward pass during the training of
a GCN, yielding weight matrices that approach orthonormality and thereby
a more robust GNN.
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Results

Table: Node classification accuracy (% standard deviation) for feature-based attacks.

Attack Dataset GCN GCN-k AirGNN RGCN ParsevalR GCORN
Cora 684 +19  692+26 735+ 19 716 £03  729+09 771+ 18
Random CiteSeer 57.8 + 1.5 623 + 1.2 64.6 + 1.6 63.7 £ 0.6 65.1 + 0.8 67.8 + 1.4
(6 = 0.5) PubMed 683+12 712+ 11 709 £+ 1.3 714+05 718+08 731+ 11
cs 853 + 1.1 86.7 + 1.1 87.5 + 1.6 88.2 + 0.9 87.6 + 0.6 89.8 + 1.2
OGBN-Arxiv. 682+ 15 528 £05 66.5 & 1.3 63819  683+19  69.1+18
Cora 417 +£21 463 +28 537 +£22 528 £1.6 553+ 12  57.6 &+ 1.9
Random CiteSeer 3824+ 13 453+ 14 498+ 21 437 4+22 512412 573+ 17
(% = 1.0) PubMed 601+ 17 623+ 13 624+ 12 619 +12 613+ 17 658+ 14
cs 699 +13  732+09 767 +28 762+ 14  787+12 813+ 1.6
OGBN-Arxiv 66.4 + 1.9 46.6 + 0.6 62.7 + 1.6 63.0 + 2.4 66.1 + 0.7 67.3 £ 2.1
Cora 541+24 583+16 682+ 18 625+ 12 686417 711+ 14
CiteSeer 523+ 11 506 £ 16 593+ 21 619 + 1.1 621+ 15 656+ 1.4
PGD PubMed 661 +21 673+ 13 708+ 17 60.5+09  689+21 723413
cs 713+ 11 741+ 0.8 763 £ 2.1 76.6 £ 1.2 773 £ 06 79.6 + 1.2
OGBN-Anxiv.  67.5 £09 499 +07 557 £09 63607  676+12 681+ 11
Cora 609 =25  642+52 667 + 38 63438  675+25 683+ 14
CiteSeer 55.8 & 1.4 717 £ 14 67.5 & 25 70.8 £ 38 69.2 + 3.8 775 £ 2.5
Nettack PubMed 600 +25  658+29 692+14 7L7+£38 683+14 70814
cs 558+ 14 716+ 14 767+ 14 717429  758+28 783+ 14
OGBN-Ardv 492 +29  533+14 567 +14 526425 558+ 14 558+ 14

e Our GCORN model often outperforms existing defense approaches when

subject to feature based attacks.
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Results

Table: Node classification accuracy (£ standard deviation) for structure-based attacks.

Attack Dataset GCN GCN-Jaccard RGCN GNN-SVD  GNN-Guard  ParsevalR GCORN
Cora 73.0+07 754+18 692403 736+09 744+08 719+07 773405
Mettack CiteSeer  63.2 +0.9 69.5 £ 1.9 689+ 06 658+06 688+15 683+08 73.7+0.3
ettacl
PubMed  60.7 + 0.7 629 + 1.8 65.1+04 821+08 848+03 695+11 718+04
CoraML  73.1 £ 0.6 75.4 £ 0.4 7714+11 713+10 765+07 769+13 79.2+0.6
Cora 76.7 £09 783+ 11 7204+03 71.6+04 750+20 784+12 799+04
PGD CiteSeer 67.8 +£0.8 709 £ 1.0 622+ 18 603+24 689+22 706+10 73.1+05
PubMed 753 + 1.6 738+ 13 786 +04 81.9+04 843+04 7734+07 77.4+04
CoraML 769 + 1.2 75.0 £ 2.4 775+03 731+05 755+08 81.3+04 84.1+0.2
Cora 749 £0.8 76.9 £ 0.9 796 £03 722+14 756+11 79.7+08 789+04
DICE CiteSeer 64.1 +£0.5 66.0 = 0.6 68.7+05 626+12 655411 689+04 74.6+0.4
PubMed 79.4 + 0.4 783+ 0.2 798+ 04 766+05 77.8+07 792+03 781+06
CoraML 783 £ 0.6 775 +£03 80.1+£04 587+04 775+02 805+13 81.1+0.8

e Our GCORN model often outperforms existing defense approaches when

subject to feature based attacks.

e GCORN is also effective against structure-based, as well as combined

structure and feature attacks.
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A Simple and Yet Fairly Effective Defense
for Graph Neural Networks

Ennadir, Abbahaddou, Lutzeyer, Vazirgiannis & Bostrom (2024, AAAI)
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Problem Set-Up

Problem: Available defense methods often have high computational complexity
and training time (often increasing with increasing graph size).
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Problem Set-Up

Problem: Available defense methods often have high computational complexity
and training time (often increasing with increasing graph size).

Solution Approach: We propose a GNN, called the NoisyGNN, in which hidden
states are perturbed by random noise following a normal distribution
N ~ N(0,81), i.e., our GNNs are of the form

7 =0 (AReLU (AXW® 4+ N) W®).
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Theoretical Results

Upper Bounds on GNN Vulnerability
We consider structural perturbations of the input graph (A, X), with a budget ¢

and 2-layer GNNs with 1-Lipschitz continuous activation functions and weight
matrices W(l)7 w®.
e Then, the vulnerability of GCNs is upper bounded by
(W NIW DX e)
B ;

e Then, the vulnerability of GINs is upper bounded by

W@ WX le(2]|All +¢))?
28 '
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and 2-layer GNNs with 1-Lipschitz continuous activation functions and weight
matrices W(l)7 w®.
e Then, the vulnerability of GCNs is upper bounded by
20 W IW®IX]le)*
3 ;

e Then, the vulnerability of GINs is upper bounded by

W@ IWOIX le(2]All +¢))?
28 '

Insight: Our upper bound on the vulnerability of a GNN is smaller for large 3
yielding a more robust GNN.

11/14



Experimental Results

Dataset  Attack Budget GCNGuard GCN-Jaccard  GCN-SVD RGNN NoisyGCN
Clean 775 +£07 80.9 £ 0.7 80.6 +04 835+03 832+04

Cora Budget (5%) 75.8 £0.6 789+ 038 784 +£06 783+06 81.2+£0.7
Budget (10%) 747+04 767 +0.7 715+08 707+08 745+06

Clean 70.1 £15 71.2+07 707 +04 723+05 719+04

CiteSeer  Budget (5%) 69.9 + 1.1 703+23 689 +07 706+07 723+£0.6
Budget (10%)  70.0 £ 1.5 675+ 2.1 688 +0.6 687+12 704 +0.8

Clean 845 + 0.6 85.0 £ 0.5 827 +03 851+08 850+06

PubMed  Budget (5%) 843+09 796+03 81.3+06 81.1+07 818+04
Budget (10%) 84.1 £03 674 +1.1 81.1+0.7 652+04 733+06

Clean 93.1+£0.6 - 86508 949+03 952+04

PolBlogs  Budget (5%) 728 £0.8 - 851 +16 760+08 79.7+06
Budget (10%) 68.7 £ 1.0 - 848 +£23 692+12 734+05

Table: Node classification accuracy (+ standard deviation) when subject to Mettack.

e Our NoisyGCNs sometimes outperform other defense methods.
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Experimental Results

Table: Mean training time analysis (in s) of the NoisyGNN in comparison to other
baselines for both the GCN and GIN instances.

Dataset GCNGuard  GCN-Jaccard RGCN  GCN-SVD  NoisyGCN
Cora 28.52 1.93 1.16 1.39 1.29
CiteSeer 36.04 1.58 1.23 1.12 1.24
PubMed 731.26 12.27 34.19 4.60 2.41
PolBlogs 18.17 5.17 0.96 0.80 0.65
Dataset GINGuard GIN-Jaccard RGCN  GIN-SVD NoisyGIN
Cora 48.93 3.12 1.31 1.51 1.93
CiteSeer 58.45 3.78 1.44 2.20 2.76
PubMed 963.58 16.28 41.09 6.33 7.86
PolBlogs 43.7 5.52 0.95 3.71 3.16

e Our NoisyGCNs sometimes outperform other defense methods.

e NoisyGNNs are faster to train than most other defense methods.
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Experimental Results

Table: Classification accuracy (£ standard deviation) of combining defense methods

with the proposed noise injection on different benchmark datasets.

Method Cora CiteSeer PolBlogs
GINGuard 61.8+0.5 55.6+1.8 82.7+£0.6
+ Noisy 66.2+1.3 58.3+1.9 83.6+0.8
GIN-Jaccard 70.4+1.1 61.242.3 -
+ Noisy 72.9+0.8 64.9+1.8 -
GCNGuard 69.5+0.7 66.2+0.6 64.7+0.8
+ Noisy 72.4+1.2 68.9+0.9 65.8+1.3
GCN-Jaccard 66.7+0.5 61.2+1.1 -
+ Noisy 69.6+0.9 63.1+0.6 -

e Our NoisyGCNs sometimes outperform other defense methods.

e NoisyGNNs are faster to train than most other defense methods.

e When combined with other defense methods, best performance is achieved.
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Other Topics We Have Been Working On

e Analysed the Expressive Power of a GNN Operating on Paths in a Graph
(Michel et al., 2023, ICML)

e Designed a GNN able to capture Neighbourhood Interaction Effects
(Chatzianastasis et al., 2023, AAAI)

e Studied GNNs for Text Classification
(Abbahaddou et al., 2023, NeurlPS Workshop)

e Graph Autoencoders for Joint Community Detection and Link Prediction
(Salha-Galvan et al., 2022, Neural Networks Journal)

e Antibiotic Resistance Prediction Using GNNs
(Qabel et al., 2022, NeurlPS Workshop)

e Improving GNNs at Scale: Approximate PageRank and CoreRank
(Ramos Vela et al., 2022, NeurlPS Workshop)

e Sparsifying Weight Matrices in GNNs
(Lutzeyer et al., 2022, ICLR Workshop)

e Analysing the Robustness of GNNs to Structural Noise
(Seddik et al., 2022, AISTATS)

e Optimised Graph Shift Operators in GNNs for optimal graph representation
(Dasoulas et al., 2021, ICLR)
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e Graph Representation Learning is a highly active area of research at the
moment gaining both academic and industrial interest.
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Conclusions

e Graph Representation Learning is a highly active area of research at the
moment gaining both academic and industrial interest.

e Graph Neural Networks are a versatile and powerful tool, that you may
want to consider using.

Specifically, with regards to the presented project

e Both the introduction of noise and the orthonormalisation of weight

matrices are viable avenues towards more robust Graph Neural Networks.
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Thank you for your attention!

@ JLutzeyer
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