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Graph Representation Learning

Overall Goal: Learn “informative” representations of graph structured data

What is graph structured data?
It’s the combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T .

Where does it arise?
It’s ubiquitous!

What can we learn from it?

• Node and Graph Classification

• Node and Graph Regression

• Link Prediction

US political weblogs
(Adamic & Glance, 2005)

Caffeine molecule
(Bronstein, 2021)

Deezer artists
(Salha-Galvan, 2022)
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Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graph-structured
data as input.
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Iteratively performing the message-passing and update computations allows us
to build ‘deep’ learning models, e.g., a 3-layer GCN
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Ã ReLU

(
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Academic and Industrial Success of GNNs

Empirical and Theoretical Research:

• expressivity analysis of GNNs
(Xu et al., 2019; Geerts and Reutter,
2022);

• bottlenecks, e.g., oversmoothing and
oversquashing (Alon and Yahav, 2020;
Deac et al., 2022)

• robustness to adversarial attacks and
noise (Günnemann, 2022; Zhou et al.,
2020; Seddik et al., 2022, AISTATS).
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Bounding the Expected Robustness of Graph Neural
Networks Subject to Node Feature Attacks

Abbahaddou*, Ennadir*, Lutzeyer, Vazirgiannis & Boström (2024, ICLR)
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(Graph) Adversarial Attacks

Goal: Adversarial attacks apply a small change to the input to achieve a large
change in the output of our model.

(Goodfellow et al., 2015)
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To quantify the robustness of a function processing graph structured data, i.e.,
f : (G,X ) → Y we need:

• a distance on the input space

dα,β
2 ([G ,X ], [G̃ , X̃ ]) = minP∈Π

(
α∥A− PÃPT∥2 + β∥X − PX̃∥2

)
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• and a distance on the output space
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Expected Adversarial Robustness

Let the expected vulnerability of a graph function f be defined as
Advα,β

ϵ [f ] = P(G ,X )∼DG,X [(G̃ , X̃ ) ∈ Bα,β(G ,X , ϵ) : dY(f (G̃ , X̃ ), f (G ,X )) > σ],

with Bα,β(G ,X , ϵ) = {(G̃ , X̃ ) : dα,β([G ,X ], [G̃ , X̃ ]) < ϵ} for any budget ϵ ≥ 0.

Then, a graph function f : (G,X ) → Y is ((dα,β , ϵ), (dY , γ))–robust if its
vulnerability Advα,β

ϵ [f ] can be upper-bounded by γ, i.e., Advα,β
ϵ [f ] ≤ γ.
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Problem Set-Up & Theoretical Results

Recall, Graph Neural Networks (GNNs) take both a graph A and node features
X as input.

Problem: Most defense approaches for GNNs defend structural attacks
altering A. There exists very little work on how to defend against attacks on
the node features X .

Upper Bound on GCN Vulnerability

We consider node-feature attacks on the input graph (A,X ), with a budget ϵ
and L-layer GCNs with weight matrices W (i) i ∈ {1, . . . , L}.
Then, the vulnerability of GCNs is upper bounded by

γ =
ϵ
∑

u∈V ŵu

σ
,

with ŵu denoting the sum of normalized walks of length (L− 1) starting from
node u.

Insight: Our upper bound on the vulnerability of a GCN is smaller for
small

∏L
i=1∥W

(i)∥1 yielding a more robust GCN.
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Insight: Our upper bound on the vulnerability of a GCN is smaller for
small

∏L
i=1∥W

(i)∥1 yielding a more robust GCN.
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Methodology

Fact: Orthonormal matrices have norm 1.
⇒ According to our bound a GNN with orthonormal weight matrices should

be more robust.

Björk Orthonormalisation Algorithm

Given a weight matrix W we iteratively alter it to approximate the closest
orthonormal matrix Ŵ . When Ŵ0 = W , we recursively compute

Ŵk+1 = Ŵk

(
I + 1

2

(
I − Ŵ T

k Ŵk

)
+ . . .+ (−1)p

(−1/2
p

) (
I − Ŵ T

k Ŵk

)p)
.

Proposed Solution: In our GCORN model we propose the inclusion of several
Björk Orthonormalisation iterations in each forward pass during the training of
a GCN, yielding weight matrices that approach orthonormality and thereby
a more robust GNN.
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k Ŵk

)
+ . . .+ (−1)p

(−1/2
p

) (
I − Ŵ T
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Ŵk+1 = Ŵk
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Results

Table: Node classification accuracy (± standard deviation) for feature-based attacks.

Attack Dataset GCN GCN-k AirGNN RGCN ParsevalR GCORN

Random

(ψ = 0.5)

Cora 68.4 ± 1.9 69.2 ± 2.6 73.5 ± 1.9 71.6 ± 0.3 72.9 ± 0.9 77.1 ± 1.8

CiteSeer 57.8 ± 1.5 62.3 ± 1.2 64.6 ± 1.6 63.7 ± 0.6 65.1 ± 0.8 67.8 ± 1.4

PubMed 68.3 ± 1.2 71.2 ± 1.1 70.9 ± 1.3 71.4 ± 0.5 71.8 ± 0.8 73.1 ± 1.1

CS 85.3 ± 1.1 86.7 ± 1.1 87.5 ± 1.6 88.2 ± 0.9 87.6 ± 0.6 89.8 ± 1.2

OGBN-Arxiv 68.2 ± 1.5 52.8 ± 0.5 66.5 ± 1.3 63.8 ± 1.9 68.3 ± 1.9 69.1 ± 1.8

Random

(ψ = 1.0)

Cora 41.7 ± 2.1 46.3 ± 2.8 53.7 ± 2.2 52.8 ± 1.6 55.3 ± 1.2 57.6 ± 1.9

CiteSeer 38.2 ± 1.3 45.3 ± 1.4 49.8 ± 2.1 43.7 ± 2.2 51.2 ± 1.2 57.3 ± 1.7

PubMed 60.1 ± 1.7 62.3 ± 1.3 62.4 ± 1.2 61.9 ± 1.2 61.3 ± 1.7 65.8 ± 1.4

CS 69.9 ± 1.3 73.2 ± 0.9 76.7 ± 2.8 76.2 ± 1.4 78.7 ± 1.2 81.3 ± 1.6

OGBN-Arxiv 66.4 ± 1.9 46.6 ± 0.6 62.7 ± 1.6 63.0 ± 2.4 66.1 ± 0.7 67.3 ± 2.1

PGD

Cora 54.1 ± 2.4 58.3 ± 1.6 68.2 ± 1.8 62.5 ± 1.2 68.6 ± 1.7 71.1 ± 1.4

CiteSeer 52.3 ± 1.1 59.6 ± 1.6 59.3 ± 2.1 61.9 ± 1.1 62.1 ± 1.5 65.6 ± 1.4

PubMed 66.1 ± 2.1 67.3 ± 1.3 70.8 ± 1.7 69.5 ± 0.9 68.9 ± 2.1 72.3 ± 1.3

CS 71.3 ± 1.1 74.1 ± 0.8 76.3 ± 2.1 76.6 ± 1.2 77.3 ± 0.6 79.6 ± 1.2

OGBN-Arxiv 67.5 ± 0.9 49.9 ± 0.7 55.7 ± 0.9 63.6 ± 0.7 67.6 ± 1.2 68.1 ± 1.1

Nettack

Cora 60.9 ± 2.5 64.2 ± 5.2 66.7 ± 3.8 63.4 ± 3.8 67.5 ± 2.5 68.3 ± 1.4

CiteSeer 55.8 ± 1.4 71.7 ± 1.4 67.5 ± 2.5 70.8 ± 3.8 69.2 ± 3.8 77.5 ± 2.5

PubMed 60.0 ± 2.5 65.8 ± 2.9 69.2 ± 1.4 71.7 ± 3.8 68.3 ± 1.4 70.8 ± 1.4

CS 55.8 ± 1.4 71.6 ± 1.4 76.7 ± 1.4 71.7 ± 2.9 75.8 ± 2.8 78.3 ± 1.4

OGBN-Arxiv 49.2 ± 2.9 53.3 ± 1.4 56.7 ± 1.4 52.6 ± 2.5 55.8 ± 1.4 55.8 ± 1.4

• Our GCORN model often outperforms existing defense approaches when
subject to feature based attacks.

• GCORN is also effective against structure-based, as well as combined
structure and feature attacks.
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Results

Table: Node classification accuracy (± standard deviation) for structure-based attacks.

Attack Dataset GCN GCN-Jaccard RGCN GNN-SVD GNN-Guard ParsevalR GCORN

Mettack

Cora 73.0 ± 0.7 75.4 ± 1.8 69.2 ± 0.3 73.6 ± 0.9 74.4 ± 0.8 71.9 ± 0.7 77.3 ± 0.5

CiteSeer 63.2 ± 0.9 69.5 ± 1.9 68.9 ± 0.6 65.8 ± 0.6 68.8 ± 1.5 68.3 ± 0.8 73.7 ± 0.3

PubMed 60.7 ± 0.7 62.9 ± 1.8 65.1 ± 0.4 82.1 ± 0.8 84.8 ± 0.3 69.5 ± 1.1 71.8 ± 0.4

CoraML 73.1 ± 0.6 75.4 ± 0.4 77.1 ± 1.1 71.3 ± 1.0 76.5 ± 0.7 76.9 ± 1.3 79.2 ± 0.6

PGD

Cora 76.7 ± 0.9 78.3 ± 1.1 72.0 ± 0.3 71.6 ± 0.4 75.0 ± 2.0 78.4 ± 1.2 79.9 ± 0.4

CiteSeer 67.8 ± 0.8 70.9 ± 1.0 62.2 ± 1.8 60.3 ± 2.4 68.9 ± 2.2 70.6 ± 1.0 73.1 ± 0.5

PubMed 75.3 ± 1.6 73.8 ± 1.3 78.6 ± 0.4 81.9 ± 0.4 84.3 ± 0.4 77.3 ± 0.7 77.4 ± 0.4

CoraML 76.9 ± 1.2 75.0 ± 2.4 77.5 ± 0.3 73.1 ± 0.5 75.5 ± 0.8 81.3 ± 0.4 84.1 ± 0.2

DICE

Cora 74.9 ± 0.8 76.9 ± 0.9 79.6 ± 0.3 72.2 ± 1.4 75.6 ± 1.1 79.7 ± 0.8 78.9 ± 0.4

CiteSeer 64.1 ± 0.5 66.0 ± 0.6 68.7 ± 0.5 62.6 ± 1.2 65.5 ± 1.1 68.9 ± 0.4 74.6 ± 0.4

PubMed 79.4 ± 0.4 78.3 ± 0.2 79.8 ± 0.4 76.6 ± 0.5 77.8 ± 0.7 79.2 ± 0.3 78.1 ± 0.6

CoraML 78.3 ± 0.6 77.5 ± 0.3 80.1 ± 0.4 58.7 ± 0.4 77.5 ± 0.2 80.5 ± 1.3 81.1 ± 0.8

• Our GCORN model often outperforms existing defense approaches when
subject to feature based attacks.

• GCORN is also effective against structure-based, as well as combined
structure and feature attacks.
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A Simple and Yet Fairly Effective Defense
for Graph Neural Networks

Ennadir, Abbahaddou, Lutzeyer, Vazirgiannis & Boström (2024, AAAI)
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Problem Set-Up

Problem: Available defense methods often have high computational complexity
and training time (often increasing with increasing graph size).

Solution Approach: We propose a GNN, called the NoisyGNN, in which hidden
states are perturbed by random noise following a normal distribution
N ∼ N (0, βI ), i.e., our GNNs are of the form

ŷ = σ
(
Ã ReLU

(
ÃXW (1) + N

)
W (2)

)
.
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Theoretical Results

Upper Bounds on GNN Vulnerability

We consider structural perturbations of the input graph (A,X ), with a budget ϵ
and 2-layer GNNs with 1-Lipschitz continuous activation functions and weight
matrices W (1),W (2).

• Then, the vulnerability of GCNs is upper bounded by

2(∥W (2)∥∥W (1)∥∥X∥ϵ)2

β
;

• Then, the vulnerability of GINs is upper bounded by

(∥W (2)∥∥W (1)∥∥X∥ϵ(2∥A∥+ϵ))2

2β
.

Insight: Our upper bound on the vulnerability of a GNN is smaller for large β
yielding a more robust GNN.
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Experimental Results

Dataset Attack Budget GCNGuard GCN-Jaccard GCN-SVD RGNN NoisyGCN

Cora

Clean 77.5 ± 0.7 80.9 ± 0.7 80.6 ± 0.4 83.5 ± 0.3 83.2 ± 0.4

Budget (5%) 75.8 ± 0.6 78.9 ± 0.8 78.4 ± 0.6 78.3 ± 0.6 81.2 ± 0.7

Budget (10%) 74.7 ± 0.4 76.7 ± 0.7 71.5 ± 0.8 70.7 ± 0.8 74.5 ± 0.6

CiteSeer

Clean 70.1 ± 1.5 71.2 ± 0.7 70.7 ± 0.4 72.3 ± 0.5 71.9 ± 0.4

Budget (5%) 69.9 ± 1.1 70.3 ± 2.3 68.9 ± 0.7 70.6 ± 0.7 72.3 ± 0.6

Budget (10%) 70.0 ± 1.5 67.5 ± 2.1 68.8 ± 0.6 68.7 ± 1.2 70.4 ± 0.8

PubMed

Clean 84.5 ± 0.6 85.0 ± 0.5 82.7 ± 0.3 85.1 ± 0.8 85.0 ± 0.6

Budget (5%) 84.3 ± 0.9 79.6 ± 0.3 81.3 ± 0.6 81.1 ± 0.7 81.8 ± 0.4

Budget (10%) 84.1 ± 0.3 67.4 ± 1.1 81.1 ± 0.7 65.2 ± 0.4 73.3 ± 0.6

PolBlogs

Clean 93.1 ± 0.6 - 86.5 ± 0.8 94.9 ± 0.3 95.2 ± 0.4

Budget (5%) 72.8 ± 0.8 - 85.1 ± 1.6 76.0 ± 0.8 79.7 ± 0.6

Budget (10%) 68.7 ± 1.0 - 84.8 ± 2.3 69.2 ± 1.2 73.4 ± 0.5

Table: Node classification accuracy (± standard deviation) when subject to Mettack.

• Our NoisyGCNs sometimes outperform other defense methods.

• NoisyGNNs are faster to train than most other defense methods.

• When combined with other defense methods, best performance is achieved.
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Experimental Results

Table: Mean training time analysis (in s) of the NoisyGNN in comparison to other
baselines for both the GCN and GIN instances.

Dataset GCNGuard GCN-Jaccard RGCN GCN-SVD NoisyGCN

Cora 28.52 1.93 1.16 1.39 1.29

CiteSeer 36.04 1.58 1.23 1.12 1.24

PubMed 731.26 12.27 34.19 4.60 2.41

PolBlogs 18.17 5.17 0.96 0.80 0.65

Dataset GINGuard GIN-Jaccard RGCN GIN-SVD NoisyGIN

Cora 48.93 3.12 1.31 1.51 1.93

CiteSeer 58.45 3.78 1.44 2.20 2.76

PubMed 963.58 16.28 41.09 6.33 7.86

PolBlogs 43.7 5.52 0.95 3.71 3.16

• Our NoisyGCNs sometimes outperform other defense methods.

• NoisyGNNs are faster to train than most other defense methods.

• When combined with other defense methods, best performance is achieved.
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Experimental Results

Table: Classification accuracy (± standard deviation) of combining defense methods
with the proposed noise injection on different benchmark datasets.

Method Cora CiteSeer PolBlogs

GINGuard 61.8±0.5 55.6±1.8 82.7±0.6

+ Noisy 66.2±1.3 58.3±1.9 83.6±0.8

GIN-Jaccard 70.4±1.1 61.2±2.3 -

+ Noisy 72.9±0.8 64.9±1.8 -

GCNGuard 69.5±0.7 66.2±0.6 64.7±0.8

+ Noisy 72.4±1.2 68.9±0.9 65.8±1.3

GCN-Jaccard 66.7±0.5 61.2±1.1 -

+ Noisy 69.6±0.9 63.1±0.6 -

• Our NoisyGCNs sometimes outperform other defense methods.

• NoisyGNNs are faster to train than most other defense methods.

• When combined with other defense methods, best performance is achieved.
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Other Topics We Have Been Working On

• Analysed the Expressive Power of a GNN Operating on Paths in a Graph
(Michel et al., 2023, ICML)

• Designed a GNN able to capture Neighbourhood Interaction Effects
(Chatzianastasis et al., 2023, AAAI)

• Studied GNNs for Text Classification
(Abbahaddou et al., 2023, NeurIPS Workshop)

• Graph Autoencoders for Joint Community Detection and Link Prediction
(Salha-Galvan et al., 2022, Neural Networks Journal)

• Antibiotic Resistance Prediction Using GNNs
(Qabel et al., 2022, NeurIPS Workshop)

• Improving GNNs at Scale: Approximate PageRank and CoreRank
(Ramos Vela et al., 2022, NeurIPS Workshop)

• Sparsifying Weight Matrices in GNNs
(Lutzeyer et al., 2022, ICLR Workshop)

• Analysing the Robustness of GNNs to Structural Noise
(Seddik et al., 2022, AISTATS)

• Optimised Graph Shift Operators in GNNs for optimal graph representation
(Dasoulas et al., 2021, ICLR)
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Conclusions

• Graph Representation Learning is a highly active area of research at the
moment gaining both academic and industrial interest.

• Graph Neural Networks are a versatile and powerful tool, that you may
want to consider using.

Specifically, with regards to the presented project

• Both the introduction of noise and the orthonormalisation of weight
matrices are viable avenues towards more robust Graph Neural Networks.
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Thank you for your attention!

@JLutzeyer
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