
Graph Representation Learning
via Graph Neural Networks

Johannes Lutzeyer

LIX Seminar Series

October 20, 2022

Johannes Lutzeyer johanneslutzeyer.com

Background:

2022 - Present Assistant Professor in DaSciM

2020 - 2022 Postdoctoral Researcher in DaSciM

Supervisor: Prof. Michalis Vazirgiannis

2015 - 2019 PhD in Statistics

Supervisor: Prof. Andrew Walden

Teaching:
• INF554 Machine and Deep Learning Responsable: Michalis Vazirgiannis

• INF573 Image Analysis Responsable: Mathieu Brédif

• Advanced Learning for Text and Graph Data Responsable: Michalis Vazirgiannis

• CSE204: Machine Learning Responsable: Jesse Read

https://johanneslutzeyer.com/

Today I present work that was done in collaboration with:

Dr. George Dasoulas
Postdoctoral Researcher

Harvard University

Michalis Chatzianastasis
PhD Student LIX

Dr. Guillaume Salha Galvan
Research Scientist Deezer

Dr. Romain Hennequin
Lead Research Scientist

Deezer

Prof. Michalis Vazirgiannis
Distinguished Professor LIX

1/27

Graph Representation Learning

Overall Goal: Learn “informative” representations of graph structured data

What is graph structured data?
It’s the combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T .

Where does it arise?
It’s ubiquitous!

What can we learn from it?

• Node and Graph Classification

• Node and Graph Regression

• Graph Learning

• Link Prediction

US political weblogs

Caffeine molecule

Deezer artists

2/27

Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graph-structured
data as input.

In this talk we will only see a specific type of
GNN, the Message Passing Neural Networks.

m(k)
v = M(k)

({
h(k−1)
w : w ∈ N (v)

})
,

h(k)
v = U(k)

(
h(k−1)
v ,m(k)

v

)
.

E.g., the Graph Convolutional Network (GCN,
Kipf and Welling, 2017)

H(1) = ReLU
(
ÃXW (1)

)
.

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4 h

(1)
5

h
(1)
6

h
(1)
7

h
(1)
8

Other examples of popular GNN architectures are the GIN (Xu et al., 2019),
GraphSage (Hamilton et al., 2017) and GAT (Veličković et al., 2018).

3/27

Academic and Industrial Success of GNNs

Empirical and Theoretical Research:

• expressivity analysis of GNNs
(Xu et al., 2019; Morris et al., 2019;
Geerts and Reutter, 2022);

• robustness to adversarial attacks and
noise (Günnemann, 2022; Sun et al.,
2020; Zhou et al., 2020).

• bottlenecks, e.g., oversmoothing and
oversquashing (Alon and Yahav, 2020;
Deac et al., 2022)

Successful Applications of GNNs:

• Google Maps (Lange and Perez, 2020);

• Twitter (Bronstein, 2020);

• Amazon (Virinchi et al., 2022);

• Discovery of a new antibiotic (Stokes et
al., 2020).

4/27

Graph Shift Operators

Definition

Graphs G = (V ,E) can be represented using:

• adjacency matrix A ∈ {0, 1}n×n where Aij = 1 iff (i , j) ∈ E .

• unnormalised graph Laplacian matrix L = D − A, where D = diag(A1n).

• symmetric normalised graph Laplacian matrix Lsym = D−1/2LD−1/2 and
random-walk normalised Laplacian matrix Lrw = D−1L.

A =

(0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)
L =

(
2 −1 0 −1

−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

)
Lsym =

(
1 −0.5 0 −0.5

−0.5 1 −0.5 0
0 −0.5 1 −0.5

−0.5 0 −0.5 1

)

Definition (Sandryhaila and Moura, 2013)

A matrix S ∈ Rn×n is called a Graph Shift Operator (GSO) if it satisfies:
Sij = 0 for i ̸= j and (i , j) /∈ E .

5/27

GSOs in Graph Representation Learning

• Spectral clustering:

(a)(a) (b)(b) (c)(c)

Spectral clustering of the karate network using A in (a), L in (b)
and Lrw in (c) (Lutzeyer, 2020).

• Graph Neural Networks (GNNs), e.g., GCN (Kipf and Welling, 2017)

H(l+1) = σ
(
D

− 1
2

1 A1D
− 1

2
1 H(l)W (l)). (1)

The sum-based aggregator in the GIN (Xu et al., 2019) corresponds to the
use of the adjacency matrix A.

In Message Passing Neural Networks, the choice of message passing function
corresponds to a choice of GSO.

6/27

Overview of the Talk

Recall,

• GNN: neural networks that process graph-structured data

• GSO: matrices that represent graphs

In this talk,

1) learn optimal GSO in GNNs;

2) use of an LSTM instead of a GSO in a GNN;

3) introduce global cluster information to GSO in Graph Autoencoders.

7/27

1) Learning Parametrised Graph Shift Operators

Dasoulas, Lutzeyer & Vazirgiannis (2021, ICLR)

8/27

Motivation to Learn GSOs

• When introducing the different standard GSO choices Butler and Chung
(2017) state: “No one matrix is best because each matrix has its own
limitations in that there is some property which the matrix cannot always
determine”.

• Graph signal processing literature: the GSO choice involves “different
tradeoffs” and leads to different signal models (Deri and Moura, 2017;
Ortega et al., 2018). Therefore, they recommend using whichever GSO
works best in a particular analysis or learning task.

Research Questions

Q1: Is there a single optimal representation to encode graph structures?
Q2: Can we learn optimal representations in an efficient way?

9/27

Parametrised Graph Shift Operators

Definition

We define the Parametrised Graph Shift Operator (PGSO), denoted by
γ(A,S), as

γ(A,S) = m1D
e1
a +m2D

e2
a AaD

e3
a +m3In, (2)

where Aa = A+ aIn, Da = Diag(Aa1n) and S = (m1,m2,m3, e1, e2, e3, a) .

S=(m1, m2, m3, e1, e2, e3, a) Operator Description

(0, 1, 0, 0, 0, 0, 0) A
Adjacency matrix and Summation
Aggregation Operator of GNNs

(1,−1, 0, 1, 0, 0, 0) D − A Unnormalised Laplacian matrix L

(1, 1, 0, 1, 0, 0, 0) D + A Signless Laplacian matrix Q (Cvetkovic et al., 1997)

(0,−1, 1, 0,−1, 0, 0) In − D−1A Random-walk Normalised Laplacian Lrw

(0,−1, 1, 0, − 1
2
, − 1

2
, 0) In − D− 1

2 AD− 1
2 Symmetric Normalised Laplacian Lsym

(0, 1, 0, 0, − 1
2
, − 1

2
, 1) D

− 1
2

1
A1D

− 1
2

1

Normalised Adjacency matrix of GCNs
(Kipf and Welling, 2017)

(0, 1, 0, 0,−1, 0, 0) D−1A
Mean Aggregation Operator of GNNs

(Xu et al., 2019)

10/27

PGSO in Graph Neural Networks

Notation:

• ϕ(A) : [0, 1]n×n → Rn×n denotes a non-parametrised function of A.

• M(ϕ(A),X) denotes a GNN model.

Utilization of PGSO in GNNs

1. GNN-PGSO: M(ϕ(A),X) → M′(γ(A,S),X).

2. GNN-mPGSO (multi-PGSO): M(ϕ(A),X) → M′′(γ[K](A,S [K]),X),
where γ[K](A,S [K]) = [γ(A,S1), . . . , γ(A,SK)].

• Put simply, we replace the GSO used in a GNN model by γ(A,S).

11/27

Convolutions and Message-Passing

• Examples of utilisation of GNN-PGSO models

1. GCN (Kipf & Welling, 2017): The propagation rule is

H(l+1) = σ
(
D

− 1
2

1 A1D
− 1

2
1 H(l)W (l)),

where W (l) is a weight matrix and σ is a non-linear activation function.
The GCN-PGSO and GCN-mPGSO models are defined, respectively, as

H(l+1) = σ
(
γ(A,S)H(l)W (l)) and H(l+1) = σ

(
γ(A,S l)H(l)W (l)).

2. GIN (Xu et al., 2019): The propagation rule is

h
(l+1)
i = σ

(
h
(l)
i W (l) +

∑
j :vj∈N (vi)

h
(l)
j W (l)

)
.

The GIN-PGSO model is defined as

h
(l+1)
i = σ

((
m1 (Da)

e1
i +m3

)
h
(l)
i W (l) +

∑
j :vj∈N (vi)

ϵijh
(l)
j W (l)

)
,

where ϵij are edge weights defined as ϵij = m2 (Da)
e2
i (Da)

e3
j .

12/27

Spectral Analysis

Theorem

γ(A,S) has real eigenvalues and a set of real eigenvectors independent of the
parameters chosen in S.

Theorem

Let Ci = m1(di + a)e1 +m2(di + a)e2+e3a+m3 and Ri = |m2|(di + a)e2+e3di ,
where di denotes the degree of node vi . Furthermore, we denote eigenvalues of
γ(A,S) by λ1 ≤ λ2 ≤ . . . ≤ λn. Then, for all j ∈ {1, . . . , n},

λj ∈
[

min
i∈{1,...,n}

(Ci − Ri) , max
i∈{1,...,n}

(Ci + Ri)

]
. (3)

• For the parametrisation of γ(A,S) corresponding to the adjacency matrix,
we obtain the spectral support [−dmax, dmax], as required.

• For the message passing operator in the GCN, we obtain the following
bounds on the spectral support [−(dmax − 1)/(dmax + 1), 1], the lower
bound of this interval tends to -1 as dmax → ∞.

13/27

Spectral Analysis: Empirical Observation

0 20 40 60 80 100
Epochs

10

5

0

5

10

S
p

e
ct

ra
l
b

o
u
n
d

s

0 20 40 60 80 100
Epochs

0.5

0.0

0.5

1.0

1.5

P
a
ra

m
e
te

r
V

a
lu

e
s

m1

m2

m3

e1

e2

e3

a

(a) (b)

• Surprisingly, the spectral support of the PGSO remains centered at 0
throughout training.

• We observe the parameters of the PGSO to be smoothly varying
throughout training.

14/27

Results on Real-world Datasets

• In Simulation Studies we independently verify theoretical results:
• PGSO parameters replicate the GSO regularisation derived in Qin and Rohe (2013).

• Real-World Datasets:
• 3 node classification and 5 graph classification datasets.
• 4 GNN architectures: GCN, SGC, GAT and GIN.
• 3 GSO variants: Standard, mPGSO and PGSO.

• For all datasets and architectures, the incorporation of the PGSO and the
mPGSO enhances the model performance.

• The impact of PGSO is higher in graph classification tasks.

• Our code is publicly available: https://github.com/gdasoulas/PGSO.

https://github.com/gdasoulas/PGSO

15/27

2) Graph Ordering Attention Networks

Chatzianastasis, Lutzeyer, Dasoulas & Vazirgiannis (2023, AAAI)

16/27

An Information Theory Perspective for Graphs

Following Williams and Beer (2010), the mutual information of the hidden
state of a node u and the hidden states in its closed neighbourhood HN (u) can
be decomposed into three components:

I (hu;HN (u)) =
∑

v∈N (u)

Uv + R + S ,

• unique information Uv ,

• redundant information R,

• synergistic information S .

E.g.: The Cora Dataset (Sen et al., 2008)

• Uv – unique key words,

• R – repeatedly present key words,

• S – combinations of key words.

Problem

Most GNN layers only capture unique information, since they consider nodes
individually or in pairs.

17/27

Graph Ordering Attention Networks

To capture these three types of information, we introduce a dependence of the
contribution cuv of the neighbour node v to the central node u on all neighbours
of u.

Sequence of
Neighborhood

[, , ,]
Sequence

Model
(LSTM)

Ordering
Module

(Attention)

Figure: An illustration of the aggregation and update of the
representation of node vi using a GOAT layer.

1) A self-attention mechanism is used to obtain a ranking between the nodes
of the neighbourhood.

2) Then, the ordered neighbourhood is given as input into a sequence model
(LSTM) to produce the updated representation of node vi .

18/27

GOAT – Theoretical Results

Permutation-Equivariance of GOAT

The GOAT layer performs a permutation-equivariant transformation of the
hidden states.

Sketch Proof: We perform a permutation-invariant operation on each local
neighborhood resulting in a permutation-equivariant architecture.

Injectivity of GOAT

The GOAT layer is able to approximate any measurable injective function
arbitrarily well in probability.

Sketch Proof: The reordering in the Ordering Part is straightforwardly injective
and for the Sequence Modeling Part we make use of Theorem 3 from Hammer
(2000, p. 6), which establishes that recurrent neural networks can approximate
any measurable function (including injective functions) arbitrarily well in
probability.

19/27

Results on Real-World Datasets

• Good performance of GOAT on Simulation Studies for which synergistic
information is crucial.

• Real-World Datasets:
• 6 real-world node classification datasets

• 3 variants using different RNNs as the sequence model of GOAT

Method Cora Citeseer Disease LastFM Asia Computers Photo

MLP 43.8 52.9 79.10 ±0.97 72.27 ±1.00 79.53 ±0.66 87.89 ±1.04

GCN 81.4 67.5 88.98 ±2.21 83.58 ±0.93 90.72 ±0.50 93.99 ±0.42

GraphSAGE (mean) 77.2 65.3 88.79 ±1.95 83.07 ±1.19 91.47 ±0.37 94.32 ±0.46

GraphSAGE (lstm) 74.1 59.9 90.50 ±2.15 86.85 ±1.07 91.26 ±0.51 94.32 ±0.64

GIN 75.5 62.1 90.20 ±2.23 82.94 ±1.25 84.68 ±2.33 90.07 ±1.19

GAT 83.0 69.3 89.13 ±2.22 77.57 ±1.82 85.41 ±2.95 90.30 ±1.76

PNA 76.4 58.9 86.84 ±1.89 83.24 ±1.10 90.80 ±0.51 94.35 ±0.68

GOAT(lstm) 83.2 68.9 92.11 ±1.88 83.29 ±0.91 91.34 ±0.50 94.38 ±0.66

GOAT(gru) 83.5 70.0 91.97 ±1.90 83.35 ±0.91 91.54 ±0.48 94.22 ±0.58

GOAT(rnn) 84.2 67.9 91.67 ±1.69 83.21 ±0.98 89.10 ±0.51 92.45 ±0.60

• Our code is publicly available:
https://github.com/MichailChatzianastasis/GOAT

https://github.com/MichailChatzianastasis/GOAT

20/27

3) Modularity-Aware Graph Autoencoders for Joint
Community Detection and Link Prediction

Salha-Galvan, Lutzeyer, Dasoulas, Hennequin & Vazirgiannis (2022, Neural
Networks Journal)

21/27

Graph Autoencoders (GAEs)

A

X

Encoder
(GNN) Z

Decoder
(e.g. σ(ZZT)) Â

Graph Autoencoders (GAEs):

• learn low-dimensional representations Z in an unsupervised manner.

• typically consist of the composition of a GNN with an inner product
decoder reconstructing the graph structure.

• currently find industrial use in recommendation systems.

22/27

Motivation of our Project

Research Problem

Graph Autoencoders are very good at link prediction and often underwhelming
in community detection. Learning node embeddings Z that enable good
performance in both tasks is desirable for real-world applications.

Our Modularity-Aware Graph Autoencoders address this problem by

• using a different GSO in the encoder’s message passing scheme.

• modifying the loss function to consider a softened version of the modularity.

• considering both the clustering’s modularity and the classification AUC in
the hyperparameter selection.

To stay on topic, we will discuss only the first of these contributions.

23/27

Introducing Global Cluster Information to the Message Passing Step

Steps of our method modifying the encoder (GNN):

1) We run the Louvain algorithm to cluster the graph.

• Automatically determines the number of communities.
• It’s fast O(n log n).
• It maximises the modularity, which complements our other

contributions.

2) We define a graph with adjacency Ac composed of fully connected
components corresponding to the communities obtained in step 1).

3) We replace A in the GNN encoder by

A+ λAc ,

where λ ≥ 0 is a scalar hyperparameter determining the importance of the
cluster information.

4) We randomly sample s neighbours for each node in its fully connected
component to define a subgraph represented by As .

5) We replace A in the GNN encoder by

A+ λAs ,

where λ ≥ 0 is a scalar hyperparameter determining the importance of the
cluster information.

24/27

Experiments: Cora Graph without Node Features
A weakness of existing models addressing this problem:
Their performance heavily decreases if no node features are available.

Models Joint Link Prediction and Community Detection

(Dimension d = 16) on graph with 15% of edges being masked

AMI (in %) ARI (in %) AUC (in %) AP (in %)

Modularity-Aware GAE/VGAE Models

Linear Modularity-Aware VGAE 42.86 ± 1.65 34.53 ± 1.97 85.96 ± 1.24 87.21 ± 1.39

Linear Modularity-Aware GAE 43.48 ± 1.12 35.51 ± 1.20 87.18 ± 1.05 88.53 ± 1.33

GCN-based Modularity-Aware VGAE 41.03 ± 1.55 33.43 ± 2.17 84.87 ± 1.14 85.16 ± 1.23

GCN-based Modularity-Aware GAE 41.13 ± 1.35 35.01 ± 1.58 86.90 ± 1.16 87.55 ± 1.26

Standard GAE/VGAE Models

Linear VGAE 32.22 ± 1.76 21.82 ± 1.80 85.69 ± 1.17 89.12 ± 0.82

Linear GAE 28.41 ± 1.68 19.45 ± 1.75 84.46 ± 1.64 88.42 ± 1.07

GCN-based VGAE 28.62 ± 2.76 19.70 ± 3.71 85.47 ± 1.18 88.90 ± 1.11

GCN-based GAE 31.30 ± 2.07 19.89 ± 3.07 85.31 ± 1.35 88.67 ± 1.24

Other Baselines

Louvain 39.09 ± 0.73 20.19 ± 1.73 – –

VGAECD 33.54 ± 1.46 24.32 ± 2.25 83.12 ± 1.11 84.68 ± 0.98

VGAECD-OPT 34.41 ± 1.62 24.66 ± 1.98 82.89 ± 1.20 83.70 ± 1.16

ARGVA 28.96 ± 2.64 19.74 ± 3.02 85.85 ± 0.87 88.94 ± 0.72

ARGA 31.61 ± 2.05 20.18 ± 2.92 85.95 ± 0.85 89.07 ± 0.70

DVGAE 30.46 ± 4.12 21.06 ± 5.06 85.58 ± 1.31 88.77 ± 1.29

DeepWalk 30.26 ± 2.32 20.24 ± 3.91 80.67 ± 1.50 80.48 ± 1.28

node2vec 36.25 ± 1.38 29.43 ± 2.21 82.43 ± 1.23 81.60 ± 0.91

In the absence of node features, our model outperforms a large number of
baselines achieving good performance in both tasks.

25/27

Experiments: Real-World Datasets with Node Features

Datasets Models Joint Link Prediction and Community Detection

(Dimension d = 16) on graph with 15% of edges being masked

AMI (in %) ARI (in %) AUC (in %) AP (in %)

Linear Modularity-Aware VGAE 49.70 ± 2.04 43.64 ± 3.51 93.10 ± 0.88 94.06 ± 0.75

Linear Standard VGAE 46.90 ± 1.43 38.24 ± 3.56 93.04 ± 0.80 94.04 ± 0.75

Cora Louvain 39.09 ± 0.73 20.19 ± 1.73 – –

Best other baseline:

VGAECD-OPT 47.83 ± 1.64 39.45 ± 3.53 92.25 ± 1.07 92.60 ± 0.91

Linear Modularity-Aware VGAE 22.21 ± 1.24 12.59 ± 1.25 86.54 ± 1.20 88.07 ± 1.22

Linear Standard VGAE 17.38 ± 1.43 6.10 ± 1.51 89.08 ± 1.19 91.19 ± 0.98

Citeseer Louvain 22.71 ± 0.47 7.70 ± 0.67 – –

Best other baseline:

DVGAE 16.02 ± 3.32 10.03 ± 4.48 86.85 ± 1.48 88.43 ± 1.23

GCN-Based Modularity-Aware VGAE 19.10 ± 0.21 12.00 ± 0.17 85.40 ± 0.14 86.38 ± 0.15

GCN-Based Standard VGAE 13.98 ± 0.35 8.81 ± 0.32 85.37 ± 0.12 86.41 ± 0.11

Deezer-Album Louvain 17.68 ± 0.20 11.02 ± 0.13 – –

Best other baseline:

node2vec 18.34 ± 0.29 11.27 ± 0.28 83.51 ± 0.17 84.12 ± 0.15

The good performance of our model extends to industrial scale datasets such
as a private Deezer graph containing 2.5 million music albums and 25 million
edges.

26/27

Other Topics We Have Been or Are Working On

• Analysing the Robustness of GNNs to Structural Noise
(Seddik et al., 2022, AISTATS)

• Sparsifying Weight Matrices in GNNs
(Lutzeyer et al., 2022, ICLR Workshop)

• Graph Representation Learning to Detect Product Influence
(collaborator: LVMH & SEPHORA)

• Quantifying Over-Smoothing in GNNs

• Improving GNNs at Scale: Approximate PageRank and CoreRank
(under review: NeurIPS Workshop)

• Antibiotic Resistance Prediction Using GNNs
(under review: NeurIPS Workshop)

27/27

Conclusions

• Graph Representation Learning is a highly active area of research at the
moment gaining both academic and industrial interest.

• Graph Neural Networks are a versatile and powerful tool, that you may
want to consider using.

Specifically, with regards to the presented projects

• Learning optimal graph representation – via a Parametrised GSO – in
GNNs improves their performance on real world datasets.

• The Partial Information Decomposition offers a novel view of graph
learning and the GOAT architecture effectively addresses the identified
challenges.

• Adding global cluster information to the GSO in GNNs improves the
performance of Graph Autoencoders in industrial application.

Thank you for your attention!

@JLutzeyer

References
U. Alon & E. Yahav, “On the Bottleneck of Graph Neural Networks and its Practical Implications,” In:

International Conference on Learning Representations (ICLR), 2020.

M. Bronstein, “Graph ML at Twitter,” Twitter Engineering Blog Post,
https://blog.twitter.com/engineering/en_us/topics/insights/2020/graph-ml-at-twitter, 2020.

S. Butler & F. Chung, “Spectral graph theory,” In: L. Hogben (ed) Handbook of linear algebra (2nd edition), Boca
Raton, FL: CRC Press, pp. 47/1—47/14, 2017.

M. Chatzianastasis, J. F. Lutzeyer, G. Dasoulas & M. Vazirgiannis, “Graph Ordering Attention Networks,”
Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI), 2023.

D. Cvetkovic, R. Rowlinson & S. Simic, Eigenspaces of graphs, Cambridge, UK: Cambridge University Press, 1997.

L. Dall’Amico, R. Couillet & N. Tremblay, “Optimal Laplacian regularization for sparse spectral community
detection,” ICASSP, 2020.

A. Deac, M. Lackenby & P. Veličković, “Expander Graph Propagation,” arXiv:2210.02997, 2022.

G. Dasoulas, J. F. Lutzeyer & M. Vazirgiannis, “Learning Parametrised Graph Shift Operators,” In: International
Conference on Learning Representations (ICLR), 2021.

https://twitter.com/jlutzeyer
https://blog.twitter.com/engineering/en_us/topics/insights/2020/graph-ml-at-twitter

J. A. Deri & J. M. F. Moura, “Spectral projector-based graph Fourier transforms,” IEEE Journal of Selected Topics
in Signal Processing, vol. 11, pp. 785–795, 2017.

V.P. Dwivedi, C.K. Joshi, T. Laurent, Y. Bengio & X. Bresson, “Benchmarking Graph Neural Networks,”
arXiv:2003.00982, 2020.

F. Geerts & J. L. Reutter, “Expressiveness and Approximation Properties of Graph Neural Networks,” International
Conference on Learning Representations (ICLR), 2022.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals & G. E. Dahl, “Neural message passing for Quantum
chemistry,” Proceedings of the 34th International Conference on Machine Learning (ICML), 2017.

S. Günnemann, “Graph Neural Networks: Adversarial Robustness,” Graph Neural Networks: Foundations,
Frontiers, and Applications, pp. 149–176, 2022.

B. Hammer, “On the approximation capability of recurrent neural networks,” Neurocomputing, pp. 107–123, 2000.

W. L. Hamilton, R. Ying & J. Leskovec, “Inductive Representatino Learning on Large Graphs,” Proceedings of the
31st International Conference on Neural Information Processing Systems (NIPS), pp. 1025 – 1035, 2017.

Thomas N. Kipf & M. Welling, “Variational Graph Auto-Encoders” NeurIPS Workshop on Bayesian Deep Learning,
2016.

Thomas N. Kipf & M. Welling, “Semi-supervised classification with graph convolutional networks,” International
Conference on Learning Representations (ICLR), 2017.

O. Lange & L. Perez, “Traffic prediction with advanced Graph Neural Networks,” DeepMind Research Blog Post,
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks,
2020.

J. Lutzeyer, Network Representation Matrices and their Eigenproperties: A Comparative Study, PhD thesis:
Imperial College London, 2020.

J. Lutzeyer, C. Wu & M. Vazirgiannis, “Graph Neural Network Simplification: Sparsifying the Update Step,” ICLR
Workshop on Geometrical and Topological Representation Learning, 2022.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J.E Lenssen, G. Rattan & M. Grohe, “Weisfeiler and Lehman Go
Neural: Higher-order Graph Neural Networks,” Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 4602–4609, 2019.

A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura & P. Vandergheynst, “Graph signal processing: Overview,
challenges, and applications,” Proceedings of the IEEE, vol. 106, pp. 808–828, 2018.

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

T. Qin & K. Rohe, “Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel,”
Advances in neural information processing systems (NIPS), pp. 3120–3128, 2013.

G. Salha-Galvan, J. F. Lutzeyer, G. Dasoulas, R. Hennequin & M. Vazirgiannis, “Modularity-Aware Graph
Autoencoders for Joint Community Detection and Link Prediction,” arxiv:2202.00961, 2022.

A. Sandryhaila & J. M. F. Moura “Discrete signal processing on graphs,” IEEE Transactions on Signal Processing,
vol. 61, pp. 1644–1656, 2013.

M. E. A. Seddik, C. Wu, J. F. Lutzeyer & M. Vazirgiannis, “Node Feature Kernels Increase Graph Convolutional
Network Robustness,” International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher & T. Eliassi-Rad, AI Magazine, p. 93, 2008.

J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R. MacNair, S. French, L. A.
Carfrae, Z. Bloom-Ackermann, V. M. Tran, A. Chiappino-Pepe, A. H. Badran, I. W. Andrews, E. J. Chory, G.
M. Church, E. D. Brown, T. S. Jaakkola, R. Barzilay & J. J. Collins, “A Deep Learning Approach to Antibiotic
Discovery,” Cell, pp. 688–702, 2020.

L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu & B. Li, “Adversarial attack and defense on graph data: A survey,”
arXiv:1812.10528, 2020.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò & Y. Bengio, “Graph Attention Networks,” 6th
International Conference on Learning Representations (ICLR), 2018.

S. Virinchi, A. Saladi & A. Mondal, “Recommending Related Products Using Graph Neural Networks in Directed
Graphs,” In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD), 2022.

P. L. Williams & R. D. Beer, “Nonnegative decomposition of multivariate information,” arXiv:1004.2515, 2010.

K. Xu, W. Hu, J. Leskovec & S. Jegelka.“How powerful are graph neural networks?”, International Conference on
Learning Representations (ICLR), 2019.

Y. Zhou, H. Zheng & X. Huang, “Graph Neural Networks: Taxonomy, Advances and Trends,” arXiv:2012.08752,
2020.

	Introduction
	Parametrised Graph Shift Operators
	GOAT
	Modularity-Aware Graph Autoencoders
	Conclusion

